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Abstract 

Förster Resonance Energy Transfer (FRET) strategy in popular in fiber-optic sensing. However, the steady state
emission quenching of the donor is inadequate to conclude FRET. The resonance type energy transfer from one
molecule (donor) to other (acceptor) should meet few key properties including donor to acceptor energy 
migration in non-radiative way. In the present study, we have coupled the evanescent field of an optical fiber to 
the covalently attached donor (dansyl) molecules at the fiber tip. By using picosecond resolved time correlated 
single photon counting (TCSPC) we have demonstrated that dansyl at the fiber tip transfers energy to a well 
known DNA-intercalating dye ethidium. Our ultrafast detection scheme selectively distinguishes the probe 
(dansyl) emission from the intrinsic emission of the fiber. We have also used the setup for the remote sensing of 
the dielectric constant (polarity) of an environment. We have finally implemented the detection mechanism to 
detect an industrial synthetic dye methylene blue (MB) in water. 

Keywords: Fiber-optic sensor, Time Correlated Single Photon Counting (TCSPC), Sensitized fiber tip.

1. Introduction
FRET based fiber optics sensors are evident since 1990s [1, 2]. FRET is a photo-physical process in which
excited state energy from a donor is transferred ‘non-radiatively’ to an acceptor molecule at close proximity via
dipole-dipole coupling. The reports on the FRET based fiber sensors mostly rely on the fluorescence quenching
of the donor (probe) molecule in sensitized fiber [3-7]. However, Due to spectral overlap between donor 
emission and acceptor absorption spectra re-absorption of the donor radiation by the acceptor in the medium 
may occur which leads to fluorescence quenching of a donor molecule. We have addressed this issue in our
recent report on FRET based fiber optic sensing [8]. Upon modification of the earlier reported setup (Figure 1)
we were able to address multiple sensing applications. Real time detection of DNA hybridization is one of
active area of research during the last decade for better understanding of the cellular and molecular biology,
with a significant impact on sensing technology leading to new biosensors and sensing techniques for various
applications. The traditional ways to detect DNA hybridization are slow [9], nevertheless, there are several 
recent works [10-12] regarding the sensitive detection process of the DNA hybridization, starting from rapid 
detection of fiber optic DNA sensor [13] to label-free electrochemical DNA sensor [10]. In this present work we 
were able detected ethidium bromide (EtBr) tagged DNA (DNA-EtBr) in-vivo by time resolved fluorescence 
spectroscopic technique upon utilization of the FRET between dansyl chloride and DNA-EtBr. Using the same 
detection mechanism it was possible to monitor the dielectric constant of a medium as the excited state lifetime 
of the probe dansyl heavily depends on the polarity of the immediate host environment. It is important in terms
of remotely measuring the polarity of a medium such as the petroleum processing column which is reported to 
be important for the quality control of the petroleum products [14]. On the other hand synthetic dyes like
Methylene Blue (MB) are being extensively used in various industries such as textile, paper and plastics with
harmful effect in the environment [15]. The released aromatic amines from MB (benzidine, methylene etc) are 
found to be potential carcinogen. Extensive research has been devoted to remove MB from waste water 
(adsorption, filtration or chemical reaction) before dumping. However, monitoring the concentration of MB 
present in the waste water before or after the treatment is relatively less emphasized. The advantageous aspect of
our detection mechanism has been further proven by detecting methyl blue (MB) in water after attachment of 
the DNA-EtBr in the fiber tip.
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Upon collection of the fluorescence signal by the 16 channel PMT (PML-16-1-C), 16 decays corresponding to 
16 different wavelengths ware generated by using the Simple Tau-130EM module consisting of two special 
purpose data processing cards SPC-130EM and DCC-100. The processed electronic signal is fed to the Lenovo 
ThinkPad laptop-PC with pre installed SPCM64 software through Express Card 54. The steady state emission 
spectrum has been generated using the histogram plot, corresponding to maximum intensity of each channel 
(wavelength) (inset figure 2). All the experiments are performed in dark room to avoid any ambient light 
exposure. 
 
2.4. Formulism: 
The FRET distance between donor and acceptor (R) was calculated following the procedure published 
elsewhere. Briefly, the Förster distance (R0) is given by, 

( )[ ]6142
0 211.0 λκ JQnR D

−=  (in Å),     (1) 

where, 2κ  and DQ  are factor describing the relative orientation in space of the transition dipoles of the donor 
and acceptor and quantum yield of the donor in absence of acceptor respectively [17]. The degree of spectral 
overlap between the donor emission and the acceptor absorption is given by,  
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Where, FD(λ) is the fluorescence intensity of the donor in the wavelength range of λ to (λ +dλ) and ε(λ) is the 
extinction coefficient (in M-1cm-1) of the acceptor at the wavelength λ. The Donor–acceptor distance (R) has 
been calculated using the formula, 

( )6 6
0 1 /R R E E⎡ ⎤= −⎣ ⎦ ,    (3) 

where E is the FRET efficiency, measured by using the lifetime of the donor in the absence (τD) and presence 
(τDA) of acceptor, defined as, 

)/(1 DDAE ττ−=     (4) 

The FRET efficiency (E) is calculated from the amplitude weighted lifetimes ∑= i iiτατ , where αi is the 

relative amplitude contribution to the lifetime τi. We have used the amplitude weighted time constants for τD and 
τDA to evaluate E using Equation (4). 

3. Results and Discussion 

3.1. Characterizing the fiber sensor length 
The decay transients from the dansylated fiber (1 m) corresponding to 16 different wavelengths are represented 
in figure 2. It is evident that the decay pattern consists of two decay peaks. The detail investigation of such 
observation is already reported [8]. The histogram plot of the intensity maximas (inset figure 2) revealed two 
different emission peaks at 460 nm and 505 nm for peak 1 and peak 2 respectively. At λem= 505 nm the decay of 
peak 1 has an average lifetime of 2.68 ns, where as peak 2 was observed with an average excited state life time 
of 3.84 ns. Additionally, the path traveled (~ 2m) by light during the time difference (10 ns) between peak 1 and 
peak 2 is twice the length of the fiber (1 m), which confirms the origin of the second decay (peak 2) is from the 
sensitized tip. 
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interference from the background emission of the system. FRET mechanism allows us to use dipole-dipole 
coupling formulism for the estimation of proximity of the acceptor with respect to the sensitized fiber tip 
(donor) in angstrom resolution. The efficacy of the designed fiber sensor for the detection of various dielectric 
constants of a liquid medium has also been established. It has also been possible to measure the presence of MB 
in water by this detection mechanism. In near future it is expected that our FRET based study will find relevance 
in highly responsive optical sensor development. 

Acknowledgement: N.P thanks DST, India for Inspire Research Fellowship. We thank DST, India for financial 
grants (DST/TM/SERI/2k11/103 & SB/S1/PC-011/2013). We also thank DAE (India) for financial grant, 
2013/37P/73/BRNS. 

References: 
[1] D. L. Meadows, and J. S. Schultz, “Design, manufacture and characterization of an optical fiber 

glucose affinity sensor based on an homogeneous fluorescence energy transfer assay system,” Anal. 
Chim. Acta, 280(1), 21-30 (1993). 

[2] R. Ballerstadt, and J. S. Schultz, “A fluorescence affinity hollow fiber sensor for continuous 
transdermal glucose monitoring,” Anal. Chem., 72(17), 4185-4192 (2000). 

[3] D. J. Lichlyter, S. A. Grant, and O. Soykan, “Development of a novel FRET immunosensor technique,” 
Biosens. Bioelectron., 19(3), 219-26 (2003). 

[4] M. Pierce, and S. Grant, “Development of a FRET based fiber-optic biosensor for early detection of 
myocardial infarction,” Conf Proc IEEE Eng Med Biol Soc, 3, 2098-101 (2004). 

[5] S. A. Grant, M. E. Pierce, D. J. Lichlyter et al., “Effects of immobilization on a FRET immunosensor 
for the detection of myocardial infarction,” Anal. Bioanal. Chem., 381(5), 1012-1018 (2005). 

[6] S. H. Ko, and S. A. Grant, “A novel FRET-based optical fiber biosensor for rapid detection of 
Salmonella typhimurium,” Biosens. Bioelectron., 21(7), 1283-1290 (2006). 

[7] K.-C. Liao, T. Hogen-Esch, F. J. Richmond et al., “Percutaneous fiber-optic sensor for chronic glucose 
monitoring in vivo,” Biosens. Bioelectron., 23(10), 1458-1465 (2008). 

[8] N. Polley, S. Singh, A. Giri et al., “Ultrafast FRET at fiber tips: Potential applications in sensitive 
remote sensing of molecular interaction,” Sens. Actuator B-Chem., 210, 381-388 (2015). 

[9] G. H. Keller, and M. M. Manak, [DNA probes: background, applications, procedures] Macmillan Press 
Ltd., (1993). 

[10] C. Lin, Y. Wu, F. Luo et al., “A label-free electrochemical DNA sensor using methylene blue as redox 
indicator based on an exonuclease III-aided target recycling strategy,” Biosens. Bioelectron., 59, 
(2014). 

[11] H. F. Cui, L. Cheng, J. Zhang et al., “An electrochemical DNA sensor for sequence-specific DNA 
recognization in a homogeneous solution,” Biosens. Bioelectron., 56, 124-128 (2014). 

[12] V. Tjong, H. Yu, A. Hucknall et al., “Amplified On-Chip Fluorescence Detection of DNA 
Hybridization by Surface-Initiated Enzymatic Polymerization,” Anal. Chem., 83(13), 5153-5159 
(2011). 

[13] P. A. E. Piunno, U. J. Krull, R. H. E. Hudson et al., “Fiber-Optic DNA Sensor for Fluorometric 
Nucleic Acid Determination,” Anal. Chem., 67(15), 2635-2643 (1995). 

[14] I. de Andrade Bruning, “Crude oil polarity measures quality, predicts behavior,” Oil and Gas 
Journal;(United States), 89(31), (1991). 

[15] B. S. Reddy, V. K. Veni, and K. Ravindhranath, “Removal of methylene blue dye from waste waters 
using new bio-sorbents derived from Annona squamosa and Azadiracta indica plants,” J. Chem. Pharm. 
Res., 4(11), (2012). 

[16] N. Polley, S. Singh, A. Giri et al., “Evanescent field: A potential light-tool for theranostics 
application,” Rev. Sci. Instrum., 85(3), 033108 (2014). 

[17] J. R. Lakowicz, [Principles of fluorescence spectroscopy] Kluwer Academic/Plenum, New York(1999). 
[18] L. Stryer, and R. P. Haugland, “Energy transfer: a spectroscopic ruler,” Proc. Natl. Acad. Sci. U.S.A., 

58(2), 719-725 (1967). 

 

 

Proc. of SPIE Vol. 9702  970211-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/11/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx


