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Chapter 2

Manifolds

Now that we have the notions of open sets and continuity, we are
ready to define the fundamental object that will hold our attention
during this course.
• A manifold is a topological space which is locally like Rn. 2

That is, every point of a manifold has an open neighbourhood
with a one-to-one map onto some open set of Rn.
• More precisely, a topological space M is a smooth n-
dimensional manifold if the following are true:

i) We can cover the space with open sets Uα, i.e. every point of
M lies within some Uα.

ii) ∃ a map ϕα : Uα → Rn, where ϕα is one-to-one and onto
some open set of Rn. ϕα is continuous, ϕα

−1 is continuous, i.e.
ϕα → Vα ∈ Rn is a homeomorphism for Vα.

(Uα, ϕα) is called a chart (Uα is called the domain of the
chart). The collection of charts is called an atlas.

iii) In any intersection Uα ∩ Uβ, the maps ϕα ◦ ϕβ−1, which are
called transition functions and take open sets of Rn to open
sets of Rn, i.e. ϕα ◦ ϕβ−1 : ϕβ(Uα ∩ Uβ) → ϕα(Uα ∩ Uβ), are
smooth maps. 2

• n is called the dimension of M. 2

We have defined smooth manifolds. A more general definition is
that of a Ck manifold, in which the transition functions are Ck, i.e. k
times differentiable. Smooth means k is large enough for the purpose
at hand. In practice, k is taken to be as large as necessary, up to
C∞. We get real analytic manifolds when the transition functions
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5

are real analytic, i.e. have a Taylor expansion at each point, which
converges. Smoothness of a manifold is useful because then we can
say unambiguously if a function on the manifold is smooth as we will
see below.
• A complex analytic manifold is defined similarly by replac-
ing Rn with Cn and assuming the transitions functions ϕα ◦ϕβ−1 to
be holomorphic (complex analytic). 2

• Given a chart (Uα, ϕα) for a neighbourhood of some point P, the
image (x1, · · · , xn) ∈ Rn of P is called the coordinates of P in the
chart (Uα, ϕα). A chart is also called a local coordinate system.2

In this language, a manifold is a space on which a local coordi-
nate system can be defined, and coordinate transformations between
different local coordinate systems are smooth. Often we will suppress
U and write only ϕ for a chart around some point in a manifold. We
will always mean a smooth manifold when we mention a manifold.

Examples: Rn (with the usual topology) is a manifold. 2

The typical example of a manifold is the sphere. Consider the
sphere Sn as a subset of Rn+1:

(x1)2 + · · ·+ (xn+1)2 = 1 (2.1)

It is not possible to cover the sphere by a single chart, but it is
possible to do so by two charts.1

For the two charts, we will construct what is called the stereo-
graphic projection. It is most convenient to draw this for a circle
in the plane, i.e. S1 in R2, for which the equatorial ‘plane’ is simply
an infinite straight line. Of course the construction works for any
Sn. consider the ‘equatorial plane’ defined as the x1 = 0, i.e. the
set {(0, x2, · · · , xn+1)}, which is simply Rn when we ignore the first
zero. We will find homeomorphisms from open sets on Sn to open
sets on this Rn. Let us start with the north pole N , defined as the
point (1, 0, · · · , 0).

We draw a straight line from N to any point on the sphere. If
that point is in the upper hemisphere (x1 > 0) the line is extended till
it hits the equatorial plane. The point where it hits the plane is the

1The reason that it is not possible to cover the sphere with a single chart
is that the sphere is a compact space, and the image of a compact space un-
der a continuous map is compact. Since Rn is non-compact, there cannot be a
homeomorphism between Sn and Rn.
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6 Chapter 2. Manifolds

image of the point on the sphere which the line has passed through.
For points on the lower hemisphere, the line first passes through the
equatorial plane (image point) before reaching the sphere (source
point). Then using similarity of triangles we find (Exercise!) that
the coordinates on the equatorial plane Rn of the image of a point
on Sn\{N} is given by

ϕN :
(
x1, x2, · · · , xn+1

)
7→

(
x2

1− x1
, · · · , x

n+1

1− x1

)
. (2.2)

Similarly, the stereographic projection from the south pole is

ϕS : Sn\{S} → Rn,(
x1, x2, · · · , xn+1

)
7→

(
x2

1 + x1
, · · · , x

n+1

1 + x1

)
. (2.3)

If we write

z =

(
x2

1− x1
, · · · , x

n+1

1− x1

)
, (2.4)

we find that

|z|2 ≡
(

x2

1− x1

)2

+ · · ·+
(
xn+1

1− x1

)2

=
1− (x1)2

(1− x1)2
=

1 + x1

1− x1
(2.5)

The overlap between the two sets is the sphere without the poles.
Then the transition function between the two projections is

ϕS ◦ ϕN : Rn\{0} → Rn\{0}, z 7→ z

|z|2
. (2.6)

These are differentiable functions of z in Rn\{0}. This shows that
the sphere is an n-dimensional differentiable manifold. 2

• A Lie group is a group G which is also a smooth (real analytic
for the cases we will consider) manifold such that group composition
written as a map (x, y) 7→ xy−1 is smooth. 2

Another way of defining a Lie group is to start with an n-
parameter continuous group G which is a group that can be
parametrized by n (and only n) real continuous variables. n is called
the dimension of the group, n = dimG. (This is a different defi-
nition of the dimension. The parameters are global, but do not in
general form a global coordinate system.)
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7

Then any element of the group can be written as g(a) where
a = (a1, · · · , an) . Since the composition of two elements of G must
be another element of G, we can write g(a)g(b) = g(φ(a, b)) where
φ = (φ1, · · · , φn) are n functions of a and b. Then for a Lie group,
the functions φ are smooth (real analytic) functions of a and b.

These definitions of a Lie group are equivalent, i.e. define the
same objects, if we are talking about finite dimensional Lie groups.
Further, it is sufficient to define them as smooth manifolds if we are
interested only in finite dimensions, because all such groups are also
real analytic manifolds. Apparently there is another definition of
a Lie group as a topological group (like n-parameter continuous
group, but without an a priori restriction on n, in which the compo-
sition map (x, y) 7→ xy−1 is continuous) in which it is always possible
to find an open neighbourhood of the identity which does not contain
a subgroup.

Any of these definitions makes a Lie group a smooth manifold,
an n-dimensional Lie group is an n-dimensional manifold. 2

The phase space of N particles is a 6N -dimensional manifold, 3N
coordinates and 3N momenta. 2

The Möbius strip is a 2-dimensional manifold. 2

The space of functions with some specified properties is of-
ten a manifold. For example, linear combinations of solutions of
Schrödinger equation which vanish outside some region form a man-
ifold. 2

Finite dimensional vector spaces are manifolds. 2

Infinite dimensional vector spaces with finite norm (e.g. Hilbert
spaces) are manifolds. 2

• A connected manifold cannot be written as the disjoint union
of open sets. Alternatively, the only subsets of a connected manifold
which are both open and closed are ∅ and the manifold itself. 2

SO(3), the group of rotations in three dimensions, is a 3-
dimensional connected manifold. O(3), the group of rotations plus
reflections in three dimensions, is also a 3-dimensional manifold,
but is not connected since it can be written as the disjoint union
SO(3)∪PSO(3) where P is reflection. 2

L↑+, the group of proper (no space reflection) orthochronous (no
time reflection) Lorentz transformations, is a 6-dimensional con-
nected manifold. The full Lorentz group is a 6-dimensional manifold,
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8 Chapter 2. Manifolds

not connected. 2

Rotations in three dimensions can be represented by 3 × 3 real
orthogonal matrices R satisfying RTR = I. Reflection is represented
by the matrix P = −I. The space of 3 × 3 real orthogonal matrices
is a connected manifold. 2

The space of all n× real non-singular matrices is called GL(n,R).
This is an n2-dimensional Lie group and connected manifold. 2


