## Chapter 18

## Maxwell equations

We will now consider a particular example in physics where differential forms are useful. The Maxwell equations of electrodynamics are, with $c=1$,

$$
\begin{align*}
\boldsymbol{\nabla} \cdot \boldsymbol{E} & =\rho  \tag{18.1}\\
\boldsymbol{\nabla} \times \boldsymbol{B}-\frac{\partial \boldsymbol{E}}{\partial t} & =\boldsymbol{j}  \tag{18.2}\\
\boldsymbol{\nabla} \cdot \boldsymbol{B} & =0  \tag{18.3}\\
\boldsymbol{\nabla} \times \boldsymbol{E}+\frac{\partial \boldsymbol{B}}{\partial t} & =0 \tag{18.4}
\end{align*}
$$

The electric and magnetic fields are all vectors in three dimensions, but these equations are Lorentz-invariant. We will write these equations in terms of differential forms.

Consider $\mathbb{R}^{4}$ with Minkowski metric $g_{\mu \nu}=\operatorname{diag}(-1,1,1,1)$. For the magnetic field define a 2 -form

$$
\begin{equation*}
B=B_{x} d y \wedge d z+B_{y} d z \wedge d x+B_{z} d x \wedge d y \tag{18.5}
\end{equation*}
$$

For the electric field define a 1 -form

$$
\begin{equation*}
E=E_{x} d x+E_{y} d y+E_{z} d z \tag{18.6}
\end{equation*}
$$

Combine these two into a 2 -form $F=B+E \wedge d t$. Let us calculate $d F=d(B+E \wedge d t)=d B+d E \wedge d t$. As usual, We will write $1,2,3$
for the component labels $x, y, z$.

$$
\begin{align*}
& d B= d\left(B_{1} d y \wedge d z+B_{2} d z \wedge d x+B_{3} d x \wedge d y\right) \\
&=\partial_{t} B_{1} d t \wedge d y \wedge d z+\partial_{1} B_{1} d x \wedge d y \wedge d z \\
&+\partial_{t} B_{2} d t \wedge d z \wedge d x+\partial_{2} B_{2} d y \wedge d z \wedge d x \\
&+\partial_{t} B_{3} d t \wedge d x \wedge d y+\partial_{3} B_{3} d z \wedge d x \wedge d y \tag{18.7}
\end{align*}
$$

And

$$
\begin{align*}
d(E \wedge d t)= & d\left(E_{1} d x \wedge d t+E_{2} d y \wedge d t+E_{3} d z \wedge d t\right) \\
=\partial_{2} & E_{1} d y \wedge d x \\
& +\partial_{1} E_{2} d x \\
\wedge d t+\partial_{3} E_{1} d z \wedge d x & \wedge d t+\partial_{3} E_{2} d z \wedge d t  \tag{18.8}\\
+\partial_{1} E_{3} d x & \wedge d z \wedge d t+\partial_{2} E_{3} d y \wedge d z \wedge d t .
\end{align*}
$$

Thus, remembering that the wedge product changes sign under each exchange, we can combine these two to get

$$
\begin{align*}
d F= & \left(\partial_{t} B_{1}+\partial_{2} E_{3}-\partial_{3} E_{2}\right) d t \wedge d y \wedge d z \\
& +\left(\partial_{t} B_{2}+\partial_{1} E_{3}-\partial_{3} E_{1}\right) d t \wedge d z \wedge d x \\
& +\left(\partial_{t} B_{3}++\partial_{1} E_{2}-\partial_{2} E_{1}\right) d t \wedge d x \wedge d y \\
& +\left(\partial_{1} B_{1}+\partial_{2} B_{2}+\partial_{3} B_{3}\right) d x \wedge d y \wedge d z \\
= & \left(\partial_{t} B_{1}+(\boldsymbol{\nabla} \times \boldsymbol{E})_{1}\right) d t \wedge d y \wedge d z \\
& +\left(\partial_{t} B_{2}+(\boldsymbol{\nabla} \times \boldsymbol{E})_{2}\right) d t \wedge d z \wedge d x \\
& +\left(\partial_{t} B_{3}+(\boldsymbol{\nabla} \times \boldsymbol{E})_{3}\right) d t \wedge d x \wedge d y \\
& +(\boldsymbol{\nabla} \cdot \boldsymbol{B}) d x \wedge d y \wedge d z . \tag{18.9}
\end{align*}
$$

Thus two of Maxwell's equations are equivalent to $d F=0$.
For the other two equations we need $\star F$. Using the formula (17.11) for dual basis forms, it is easy to calculate that

$$
\begin{array}{ll}
\star(d x \wedge d y)=d t \wedge d z, & \star(d y \wedge d z)=d t \wedge d x,
\end{array} \quad \star(d z \wedge d x)=d t \wedge d y, ~ 子 r(d x \wedge d t)=d y \wedge d z, \quad \star(d y \wedge d t)=d z \wedge d x, \quad \star(d z \wedge d t)=d x \wedge d y .
$$

We use these to calculate

$$
\begin{align*}
\star F= & \star(B+E \wedge d t) \\
= & B_{1} d t \wedge d x+B_{2} d t \wedge d y+B_{3} d t \wedge d z \\
& +E_{1} d y \wedge d z+E_{2} d z \wedge d x+E_{3} d x \wedge d y \tag{18.11}
\end{align*}
$$

Then in the same way as for the previous calculation, we find

$$
\begin{align*}
d \star F= & (\boldsymbol{\nabla} \cdot \boldsymbol{E}) d x \wedge d y \wedge d z \\
& +\left(\partial_{t} E_{1}-(\boldsymbol{\nabla} \times \boldsymbol{B})_{1}\right) d t \wedge d y \wedge d z \\
& +\left(\partial_{t} E_{2}-(\boldsymbol{\nabla} \times \boldsymbol{B})_{2}\right) d t \wedge d z \wedge d x \\
& +\left(\partial_{t} E_{3}+(\boldsymbol{\nabla} \times \boldsymbol{B})_{3}\right) d t \wedge d x \wedge d y . \tag{18.12}
\end{align*}
$$

We need to relate this to the charge-current.
Define the current four-vector as

$$
\begin{equation*}
j^{\mu} \partial_{\mu}=\rho \partial_{t}+j^{1} \partial_{1}+j^{2} \partial_{2}+j^{3} \partial_{3} . \tag{18.13}
\end{equation*}
$$

Then there is a corresponding one-form $j_{\mu} d x^{\mu}$ with $j_{\mu}=g_{\mu \nu} j^{\nu}$. So in terms of components,

$$
\begin{equation*}
j_{\mu} d x^{\mu}=-\rho d t+j_{1} d x^{1}+j_{2} d x^{2}+j_{3} d x^{3} . \tag{18.14}
\end{equation*}
$$

Then using Eq. (17.11) it is easy to calculate that

$$
\begin{align*}
\star j= & -\rho d x \wedge d y \wedge d z+j_{1} d t \wedge d y \wedge d z \\
& +j_{2} d t \wedge d z \wedge d x+j_{3} d t \wedge d x \wedge d y . \tag{18.15}
\end{align*}
$$

Comparing this equation with Eq. (18.12) we find that the other two Maxwell equations can be written as

$$
\begin{equation*}
d \star F=-\star j \tag{18.16}
\end{equation*}
$$

Finally, using Eq. (17.18), we see that the action of electromagnetism can be written as

$$
\begin{equation*}
-\frac{1}{2} \int F \wedge \star F \tag{18.17}
\end{equation*}
$$

This expression holds in both flat and curved spacetimes. For the latter, with local coordinates $(t, x, y, z)$ we find

$$
\begin{equation*}
F \wedge \star F=\left(\boldsymbol{B}^{2}-\boldsymbol{E}^{2}\right) \sqrt{-g} d t \wedge d x \wedge d y \wedge d z \tag{18.18}
\end{equation*}
$$

