Chapter 13

Differential forms

There is a special class of tensor fields, which is so useful as to have a separate treatment. There are called **differential p-forms** or **p-forms** for short.

- A **p-form** is a $(0,p)$ tensor which is completely antisymmetric, i.e., given vector fields v_1, \ldots, v_p,

$$\omega(v_1, \ldots, v_i, \ldots, v_j, \ldots, v_p) = -\omega(v_1, \ldots, v_j, \ldots, v_i, \ldots, v_p)$$

(13.1)

for any pair i, j.

A 0-form is defined to be a function, i.e. an element of $C^\infty(M)$, and a 1-form is as defined earlier.

The antisymmetry of any p-form implies that it will give a non-zero result only when the p vectors are linearly independent. On the other hand, no more than n vectors can be linearly independent in an n-dimensional manifold. So $p \leq n$.

Consider a 2-form A. Given any two vector fields v_1, v_2, we have $A(v_1, v_2) = -A(v_2, v_1)$. Then the components of A in a chart are

$$A_{ij} = A(\partial_i, \partial_j) = -A_{ji}.$$

(13.2)

Similarly, for a p-form ω, the components are $\omega_{i_1 \ldots i_p}$, and components are multiplied by (-1) whenever any two indices are interchanged.

It follows that a p-form has $\binom{n}{p}$ independent components in n-dimensions.

Any 1-form produces a function when acting on a vector field. So given a pair of 1-forms A, B, it is possible to construct a 2-form ω.
by defining
\[\omega(u, v) = A(u)B(v) - B(u)A(v), \quad \forall u, v. \quad (13.3) \]

- This is usually written as \(\omega = A \otimes B - B \otimes A \), where \(\otimes \) is called the outer product.

- Then the above construction defines a product written as
\[\omega = A \wedge B = -B \wedge A, \quad (13.4) \]
and called the wedge product. Clearly, \(\omega \) is a 2-form.

Let us work in a coordinate basis, but the results we find can be generalized to any basis. The coordinate bases for the vector fields, \(\{ \partial_i \} \), and 1-forms, \(\{ dx^i \} \), satisfy \(dx^i(\partial_j) = \delta^i_j \). A 1-form \(A \) can be written as \(A = A_i dx^i \), and a vector field \(v \) can be written as \(v = v^i \partial_i \), so that \(A(v) = A_i v^i \). Then for the \(\omega \) defined above and for any pair of vector fields \(u, v \),
\[\omega(u, v) = A(u)B(v) - B(u)A(v) = A_i u^i B_j v^j - B_i u^i A_j v^j = (A_i B_j - B_i A_j) u^i v^j. \quad (13.5) \]

The components of \(\omega \) are \(\omega_{ij} = \omega(\partial_i, \partial_j) \), so that
\[\omega(u, v) = \omega(u^i \partial_i, v^j \partial_j) = \omega_{ij} u^i v^j. \quad (13.6) \]

Then \(\omega_{ij} = A_i B_j - B_i A_j \) for the 2-form defined above. We can now construct a basis for 2-forms, which we write as \(dx^i \wedge dx^j \),
\[dx^i \wedge dx^j = dx^i \otimes dx^j - dx^j \otimes dx^i. \quad (13.7) \]

Then a 2-form can be expanded in this basis as
\[\omega = \frac{1}{2!} \omega_{ij} dx^i \wedge dx^j, \quad (13.8) \]
because then
\[\omega(u, v) = \frac{1}{2!} \omega_{ij} (dx^i \otimes dx^j - dx^j \otimes dx^i) (u, v) \]
\[= \frac{1}{2!} \omega_{ij} (u^i v^j - u^j v^i) = \omega_{ij} u^i v^j. \quad (13.9) \]
Similarly, a basis for p–forms is

$$dx^{i_1} \wedge \cdots \wedge dx^{i_p} = dx^{[i_1} \otimes \cdots \otimes dx^{i_p]}, \quad (13.10)$$

where the square brackets stand for total antisymmetrization: all even permutations of the indices are added and all the odd permutations are subtracted. (Caution: some books define the ‘square brackets’ as antisymmetrization with a factor $1/p!$.) For example, for a 3-form, a basis is

$$dx^i \wedge dx^j \wedge dx^k = dx^i \otimes dx^j \otimes dx^k - dx^j \otimes dx^i \otimes dx^k$$

$$+ dx^j \otimes dx^k \otimes dx^i - dx^k \otimes dx^i \otimes dx^j$$

$$+ dx^k \otimes dx^i \otimes dx^j - dx^i \otimes dx^k \otimes dx^j. \quad (13.11)$$

Then an arbitrary 3-form Ω can be written as

$$\Omega = \frac{1}{3!} \Omega_{ijk} dx^i \wedge dx^j \wedge dx^k. \quad (13.12)$$

Note that there is a sum over indices, so that the factorial goes away if we write each basis 3-form up to permutations, i.e. treating different permutations as equivalent. Thus a p–form α can be written in terms of its components as

$$\alpha = \frac{1}{p!} \alpha_{i_1 \cdots i_p} dx^{i_1} \wedge \cdots \wedge dx^{i_p}. \quad (13.13)$$

Examples: A 2-form in two dimensions can be written as

$$\omega = \frac{1}{2!} \omega_{ij} dx^i \wedge dx^j$$

$$= \frac{1}{2!} (\omega_{12} dx^1 \wedge dx^2 + \omega_{21} dx^2 \wedge dx^1)$$

$$= \frac{1}{2!} (\omega_{12} - \omega_{21}) dx^1 \wedge dx^2$$

$$= \omega_{12} dx^1 \wedge dx^2. \quad (13.14)$$

A 2-form in three dimensions can be written as

$$\omega = \frac{1}{2!} \omega_{ij} dx^i \wedge dx^j$$

$$= \omega_{12} dx^1 \wedge dx^2 + \omega_{23} dx^2 \wedge dx^3 + \omega_{31} dx^3 \wedge dx^1 \quad (13.15)$$
In three dimensions, consider two 1-forms \(\alpha = \alpha_i dx^i \), \(\beta = \beta_i dx^i \). Then
\[
\alpha \wedge \beta = (\alpha_i \beta_j - \alpha_j \beta_i) \frac{1}{2!} dx^i \wedge dx^j \\
= \alpha_i \beta_j dx^i \wedge dx^j \\
= (\alpha_1 \beta_2 - \alpha_2 \beta_1) dx^1 \wedge dx^2 \\
+ (\alpha_2 \beta_3 - \alpha_3 \beta_2) dx^2 \wedge dx^3 \\
+ (\alpha_3 \beta_1 - \alpha_1 \beta_3) dx^3 \wedge dx^1.
\]
(13.16)

The components are like the cross product of vectors in three dimensions. So we can think of the wedge product as a generalization of the cross product.

- We can also define the **wedge product** of a \(p \)-form \(\alpha \) and a \(q \)-form \(\beta \) as a \((p + q) \)-form satisfying, for any \(p + q \) vector fields \(v_1, \cdots, v_{p+q} \),
\[
\alpha \wedge (v_1, \cdots, v_{p+q}) = \frac{1}{p!q!} \sum_P (-1)^{\text{deg } P} \alpha \otimes \beta (P(v_1, \cdots, v_{p+q})) .
\]
(13.17)

Here \(P \) stands for a permutation of the vector fields, and \(\text{deg } P \) is 0 or 1 for even and odd permutations, respectively. In the outer product on the right hand side, \(\alpha \) acts on the first \(p \) vector fields in a given permutation \(P \), and \(\beta \) acts on the remaining \(q \) vector fields.

The wedge product above can also be defined in terms of the components of \(\alpha \) and \(\beta \) in a chart as follows.
\[
\alpha = \frac{1}{p!} \alpha_{i_1 \cdots i_p} dx^{i_1} \wedge \cdots \wedge dx^{i_p} \\
\beta = \frac{1}{q!} \beta_{j_1 \cdots j_q} dx^{i_1} \wedge \cdots \wedge dx^{i_q} \\
\alpha \wedge \beta = \frac{1}{p!q!} \alpha_{i_1 \cdots i_p} \beta_{j_1 \cdots j_q} (dx^{i_1} \wedge \cdots \wedge dx^{i_p}) \wedge (dx^{j_1} \wedge \cdots \wedge dx^{j_q}) .
\]
(13.18)

Note that \(\alpha \wedge \beta = 0 \) if \(p + q > n \), and that a term in which some \(i \) is equal to some \(j \) must vanish because of the antisymmetry of the wedge product.

It can be shown by explicit calculation that wedge products are associative,
\[
\alpha \wedge (\beta \wedge \gamma) = (\alpha \wedge \beta) \wedge \gamma .
\]
(13.19)
Cross-products are not associative, so there is a distinction between cross-products and wedge products. In fact, for 1-forms in three dimensions, the above equation is analogous to the identity for the triple product of vectors,

\[a \cdot (b \times c) = (a \times b) \cdot c. \]

(13.20)

For a \(p \)-form \(\alpha \) and \(q \)-form \(\beta \), we find

\[\alpha \wedge \beta = (-1)^{pq} \beta \wedge \alpha. \]

(13.21)

Proof: Consider the wedge product written in terms of the components. We can ignore the parentheses separating the basis forms since the wedge product is associative. Then we exchange the basis 1-forms. One exchange gives a factor of \(-1\),

\[dx^{i_1} \wedge dx^{i_2} = -dx^{i_2} \wedge dx^{i_1}. \]

(13.22)

Continuing this process, we get

\[dx^{i_1} \wedge \cdots \wedge dx^{i_p} \wedge dx^{j_1} \wedge \cdots \wedge dx^{j_q} \]
\[= (-1)^p dx^{j_1} \wedge dx^{i_1} \wedge \cdots \wedge dx^{j_p} \wedge dx^{j_2} \wedge \cdots \wedge dx^{j_q} \]
\[= \cdots \]
\[= (-1)^{pq} dx^{j_1} \wedge \cdots \wedge dx^{j_q} \wedge dx^{i_1} \wedge \cdots \wedge dx^{i_p}. \]

(13.23)

Putting back the components, we find

\[\alpha \wedge \beta = (-1)^{pq} \beta \wedge \alpha \]

(13.24)
as wanted.

- The wedge product defines an algebra on the space of differential forms. It is called a **graded commutative algebra**.
- Given a vector field \(v \), we can define its **contraction** with a \(p \)-form by

\[\iota_v \omega = \omega(v, \cdots) \]

(13.25)

with \(p - 1 \) empty slots. This is a \((p - 1)\)-form. Note that the position of \(v \) only affects the sign of the contracted form.

Example: Consider a 2-form made of the wedge product of two 1-forms, \(\omega = \lambda \wedge \mu = \lambda \otimes \mu - \mu \otimes \lambda \). Then contraction by \(v \) gives

\[\iota_v \omega = \omega(v, \bullet) = \lambda(v)\mu - \mu(v)\lambda = -\omega(\bullet, v). \]

(13.26)
If we have a p-form $\omega = \frac{1}{p!} \omega_{i_1 \cdots i_p} dx^{i_1} \wedge \cdots \wedge dx^{i_p}$, its contraction with a vector field $v = v^i \partial_i$ is

$$\iota_v \omega = \frac{1}{(p-1)!} \omega_{i_1 \cdots i_{p-1} v^i} dx^{i_1} \wedge \cdots \wedge dx^{i_{p-1}} \wedge dx^{i_p}.$$ \hfill (13.27)

Note the sum over indices. To see how the factor becomes $\frac{1}{(p-1)!}$, we write the contraction as

$$\iota_v \omega = \frac{1}{p!} \omega_{i_1 \cdots i_p} dx^{i_1} \wedge \cdots \wedge dx^{i_p} (v^i \partial_i).$$ \hfill (13.28)

Since the contraction is done in the first slot, so we consider the action of each basis 1-form dx^i on ∂_i by carrying dx^i to the first position and then writing a $\delta_{i_k}^i$ for each exchange, but we get the same factor by rearranging the indices of ω, thus getting a +1 for each index. This leads to an overall factor of p.

- given a diffeomorphism $\varphi : \mathcal{M}_1 \to \mathcal{M}_2$, the \textbf{pullback} of a 1-form λ (on \mathcal{M}_2) is $\varphi^* \lambda$, defined by

$$\varphi^* \lambda(v) = \lambda(\varphi_* v)$$ \hfill (13.29)

for any vector field v on \mathcal{M}_1.

Then we can consider the pullback $\varphi^* dx^i$ of a basis 1-form dx^i. For a general 1-form $\lambda = \lambda_idx^i$, we have $\varphi^* \lambda = \varphi^*(\lambda_idx^i)$. But

$$\varphi^* \lambda(v) = \lambda(\varphi_* v) = \lambda_i dx^i(\varphi_* v).$$ \hfill (13.30)

Now, $dx^i(\varphi_* v) = \varphi^* dx^i(v)$ and the thing on the right hand side is a function on \mathcal{M}_1, so we can write this as

$$\varphi^* \lambda(v) = (\varphi^* \lambda_i) \varphi^* dx^i(v),$$ \hfill (13.31)

where $\varphi^* \lambda_i$ are now functions on \mathcal{M}_1, i.e.

$$(\varphi^* \lambda_i)|_p = \lambda_i|_{\varphi(p)}.$$ \hfill (13.32)

So we can write $\varphi^* \lambda = (\varphi^* \lambda_i) \varphi^* dx^i$. For the wedge product of two 1-forms,

$$\varphi^* (\lambda \wedge \mu)(u, v) = (\lambda \wedge \mu)(\varphi_* u, \varphi_* v)$$

$$= \lambda \otimes \mu(\varphi_* u, \varphi_* v) - \mu \otimes \lambda(\varphi_* u, \varphi_* v)$$

$$= \lambda(\varphi_* u)\mu(\varphi_* v) - \mu(\varphi_* u)\lambda(\varphi_* v)$$

$$= \varphi^* \lambda(u)\varphi^* \mu(v) - \varphi^* \mu(u)\varphi^* \lambda(v)$$

$$= (\varphi^* \lambda \wedge \varphi^* \mu)(u, v).$$ \hfill (13.33)
Since u, v are arbitrary vector fields it follows that

$$
\varphi^*(\lambda \wedge \mu) = \varphi^*\lambda \wedge \varphi^*\mu \\
\varphi^*(dx^i \wedge dx^j) = \varphi^*dx^i \wedge \varphi dx^j.
$$ \tag{13.34}

Since the wedge product is associative, we can write (by assuming an obvious generalization of the above formula)

$$
\varphi^* (dx^i \wedge dx^j \wedge dx^k) = \varphi^* \left((dx^i \wedge dx^j) \wedge dx^k \right)
$$

$$
= \varphi^* (dx^i \wedge dx^j) \wedge \varphi^* dx^k
$$

$$
= \varphi^* dx^i \wedge \varphi^* dx^j \wedge \varphi^* dx^k,
$$ \tag{13.35}

and we can continue this for any number of basis 1-forms. So for any p-form ω, let us define the pullback $\varphi^* \omega$ by

$$
\varphi^* \omega (v_1, \cdots, v_p) = \omega (\varphi^* v_1, \cdots, \varphi^* v_p),
$$ \tag{13.36}

and in terms of components, by

$$
\varphi^* \omega = \frac{1}{p!} \left(\varphi^* \omega_{i_1 \cdots i_p} \right) \varphi^* dx^{i_1} \wedge \cdots \wedge dx^{i_p}.
$$ \tag{13.37}

We assumed above that the pullback of the wedge product of a 2-form and a 1-form is the wedge product of the pullbacks of the respective forms, but it is not necessary to make that assumption – it can be shown explicitly by taking three vector fields and following the arguments used earlier for the wedge product of two 1-forms.

Then for any p-form α and q-form β we can calculate from this that

$$
\varphi^* (\alpha \wedge \beta) = \varphi^* \alpha \wedge \varphi^* \beta.
$$ \tag{13.38}

Thus pullbacks commute with (are distributive over) wedge products.